Verification of FIFO systems

Etienne Lozes

FIFO systems are systems of automata communicating through FIFO queues. This simple and rather idealised model can be used to analyse some aspects of message-passing systems, reactive systems with event queues, weak memory models with buffered reads and writes, etc. From a purely computational perspective, this is a Turing complete model even for just one automaton and one FIFO queue.

In this talk, I will present a personal selection of existing works on the problem of the automatic (push-button) verification of such systems. I will consider in particular the works that try to address the verification of FIFO systems that are “nearly” systems with rendez-vous synchronisation.

Nearly synchronous FIFO systems can be found for instance in the work of Lipton on reduction [1], Elrad&Francez on communication closed layers [2], Bultan et al on synchronisability [3], Mushcoll et al on existential boundedness [4], or more recently Bouajjani et al on k-synchronous systems [5].

This idea is also implicitly present in several works on multi-party session types [6], although the connection there is only well understood in the bipartite setting, where it matches the notion of half-duplex communications [7,8]. The aim of the talk will also be to present recent personal contributions and ongoing works on k-synchronous systems, existentially-bounded systems, and half-duplex systems [9,10,11,12].

