
Sub-method, partial behavioral reflection with

Reflectivity

Steven Costiou1, Vincent Aranega2, and Marcus Denker∗1

1CRIStAL – Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France –

France
2CRIStAL – Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France –

France

Résumé

This talk was given by Marcus Denker at the conference in March 2021 (https://2021.programming-
conference.org/details/programming-2021-papers/5/Sub-method-partial-behavioral-reflection-
with-Reflectivity-Looking-back-on-10-years)
Refining or altering existing behavior is the daily work of every developer, but that cannot be
always anticipated, and software sometimes cannot be stopped. In such cases, unanticipated
adaptation of running systems is of interest for many scenarios, ranging from functional up-
grades to on-the-fly debugging or monitoring of critical applications.

A way of altering software at run time is using behavioral reflection, which is particularly
well- suited for unanticipated adaptation of real-world systems. Partial behavioral reflection
is not a new idea, and for years many efforts have been made to propose a practical way
of expressing it. All these efforts resulted in practical solutions, but which introduced a
semantic gap between the code that requires adaptation and the expression of the partial
behavior. For example, in Aspect-Oriented Programming, a pointcut description is expressed
in another language, which introduces a new distance between the behavior expression (the
Advice) and the source code in itself.

Ten years ago, the idea of closing the gap between the code and the expression of the
partial behavior led to the implementation of the Reflectivity framework. Using Reflectivity,
developers annotate Ab- stract Syntax Tree (AST) nodes with meta-behavior which is taken
into account by the compiler to produce behavioral variations. In this paper, we present Re-
flectivity, its API, its implementation and its usage in Pharo. We reflect on ten years of use of
Reflectivity, and show how it has been used as a basic building block of many innovative ideas.

Reflectivity brings a practical way of working at the AST level, which is a high-level repre-
sentation of the source code manipulated by software developers. It enables a powerful way
of dynamically add and modify behavior. Reflectivity is also a flexible mean to bridge the
gap between the expression of the meta-behavior and the source code. This ability to ap-
ply unanticipated adaptation and to provide behavioral reflection led to many experiments
and projects during this last decade by external users. Existing work use Reflectivity to
implement reflective libraries or languages extensions, featherweight code instrumentation,
dynamic software update, debugging tools and visualization and software analysis tools.

∗Intervenant

sciencesconf.org:gdr-gpl-2021:361946



Reflectivity is actively used in research projects. During the past ten years, it served as
a support, either for implementation or as a fundamental base, for many research work
including PhD theses, conference, journal and workshop papers. Reflectivity is now an im-
portant library of the Pharo language, and is integrated at the heart of the platform.
Reflectivity exposes powerful abstractions to deal with partial behavioral adaptation, while
providing a mature framework for unanticipated, non-intrusive and partial behavioral re-
flection based on AST annotation. Furthermore, even if Reflectivity found its home inside
Pharo, it is not a pure Smalltalk-oriented solution. As validation over the practical use of
Reflectivity in dynamic object-oriented languages, the API has been ported to Python. Fi-
nally, the AST annotation feature of Reflectivity opens new experimentation opportunities
about the control that developers could gain on the behavior of their own software.


